
International Journal of Technology and Engineering System (IJTES) 
Vol 6. No.1 – Jan-March 2014 Pp. 58-64 

©gopalax Journals, Singapore 
available at : www.ijcns.com 

ISSN: 0976-1345  
 
 

gopalax Publications   58 

AN APPROACH TO DESIGN AND IMPLEMENTATION OF DYNAMIC 
GEOMETRIC TRAVELLING SALESPERSON PROBLEM USING 

HOPEFIELD NEURAL NETWORK  
 

Yogeesha C. B, Dr. Ramachandra. V. Pujeri 
Karpagam University, Coimbatore,  

Tamilnadu, INDIA – 641 021 
 Collaboration Technology Group (CTG),  

yogeesha_cb@yahoo.com ; ycb@cisco.com  sriramu_vp@kggroup.com 
 

 
 

 
ABSTRACT 

 
 The use of Artificial Neural Network was originally motivated by the astonishing success of these 
concepts in their biological counterparts. Despite their totally different approaches, it can merely be seen as 
optimization methods, which is used in a wide range of applications, where traditional methods often prove to 
be unsatisfactory. Dynamic Geometric Travelling Salesperson Problem (DGTSP), which considered being a 
classic example for Combinatorial Optimization problem. Given the positions of a shortest tour that starts and 
finishes at the same city in which the cities are dynamically varied. The DGTSP is simple to state but hard to 
solve exactly, in that there is no known method of finding the optimum tour, shortest of computing the length of 
every possible tour and then selecting the shortest one. It is said to be NP-Complete. This paper explores an 
approach to design and implement this problem using Continuous Hopfield Neural Network Model. 
 
Index Terms—Combinatorial Optimization Problem, Artificial Intelligence, Artificial Neural Networks, TSP, 
Geometric Dynamic TSP, Neurodynamic Hopefield Neural Network Model. 
 
 
 
1. INTRODUCTION 

In Neurodynamic Hopefield Network Model 
[3][4], the most general case, neural networks consist 
of a (often very high) number of neurons, each of 
which has a number of inputs, which are mapped via 
a relatively simple function to its output. Networks 
differ in the way their neurons are interconnected 
(topology), in the way the output of a neuron 
determined out of its inputs (propagation function) 
and in their temporal behavior (synchronous, 
asynchronous or continuous). While the temporal 
behavior is normally determined by the simulation 
hard and software used and the topology remains very 
often unchanged, the propagation function is 
associated with a set of variable parameters which 
refer to the relative importance of the different inputs 
(weights) or to describe a threshold-value of the 
output (bias).  

 
The most striking difference between neural 

networks and traditional programming is, that neural 
networks are in fact not programmed at all, but are 
able to ”learn'' by example, thus extracting and 
generalizing features of a presented training set and 
correlating them to the desired output. After a certain 

training period, the net should be able to produce the 
right output also for new input values, which are nor 
part of the training set. This learning process is 
accomplished by a training algorithm, which 
successively changes the parameters (i.e. the weights 
and the bias) of each neuron until the desired result, 
typically expressed by the maximum distance 
between the actual and the training output is 
achieved. Those algorithms can’t be subdivided into 
two major groups according to the data used to 
update the neuron parameters. Local algorithms (e.g. 
Perceptron Learn Algorithm (PLA), 
Backpropagation) restrict themselves to the local 
data at the in and outputs of each neuron, while 
global methods (e.g. Simulated Annealing) also use 
overall data (e.g. statistical information).  

 
The Travelling Salesperson Problem (TSP) is a 

classic optimization problem that defines easy 
solution. The TSP problem is NP-complete problem. 
The conventional approach of comparing the cost 
function for alternate solutions and picking the most 
optimum, fails in the case of TSP because of the 
enormously large number of alternate solutions that 
need to be examined. Thus any algorithm for this 
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problem is going to be impractical with certain 
examples. However the artificial neural network 
provides a possible technique to solve the TSP. 

The Travelling Salesman Problem [3] is a 
classified NP-hard optimization problem. It can be 
defined as:  
Input: 
   -  Set C co-ordinates of n cities {v1,...,vn}.  
   -  Distances d(i,j) for each pair (vi,vj) of C.  
Output: 
-Hamiltonian cycle for C.  
 
2. NEURAL HOPEFIELD NETWORKS 
AND GEOMETRIC-TSP 
    Neural networks [4][8] have been used to solve a 
variety of constrained optimization problems. Due to 
their massive parallelism and fast network 
convergence to optimal solutions, they reduce the 
time that usually arise in most sequential algorithms. 
Solving optimization problems requires minimization 
of some cost functions subject to a set of constraints. 
These cost functions are known as energy functions, 
and the neural network will produce good solutions 
by minimizing an energy function. 
     
 This paper is motivated by basis of 
“Solution for the Geometric Travelling Salesperson 
Problem Using Continuous Hopfield Network 
Model” [3][6]. This is proposed as an artificial neural 
network hopefield network for solving difficult 
optimization problems like the Travelling Salesman 
Problem (TSP).  In a Hopfield neural network each 
processing element has an external input and has 
weighted connections from other neurons.  The 
continuous Hopfield model is used to find solutions 
for the 10-city problem. The 10 co-ordinates used as 
an input to the problem. Like CityA(x1,y1), 
CityB(x2,y2)...CityJ(x10,y10). The distances 
between the cities are calculated using discrete 
Euclidean length: 
 

 
 
 The distances between the cities are given 
nXn symmetric distance matrix. Where ‘n’ is the 
total number of cities. A salesperson has to visit ‘n’ 
cities in such a sequence, that the total distance 
traveled is a minimum. The travel is subject to the 
following constraints: 
 

• The path is a Hamiltonian loop (the 
salesperson will return to the starting point) 

• He shall visit each city once and only once. 
• He cannot simultaneously be present in 

more than one city at any given time. 

• The path of travel from one city to another 
is a straight line. 

 
 Consider the options available for ‘n’ cities 
in the list: The tour can begin from any city. 
Therefore we have ‘n’ possible starting points for the 
journey (however, the starting point is not a real 
issue. What matters is the sequence in which the 
cities are covered). After choosing the starting point, 
there are (n-1) options to choose the next city. After 
choosing the second city, there are (n-2) options to 
choose the third city. And so on... Thus, on the 
whole, n! distinct paths are  possible.  However, all 
the n! paths are not distinct (optimization algorithm 
need to be applied only for distinct paths). 
 

• Since the optimization is aimed at the length 
of Hamilton loop, the starting point of the 
journey is not important. This reduces 
search arena (n-1)! possible paths. 

• For every possible solution, its reverse 
sequence also gives the same distance (The 
path length is same for the sequence 
ABCDEA, and also its reverse 
sequence AEDCBA. This is 
true for every option). 

 
 Thus the number of paths that need to be 
examined are given by 

( )
2
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2
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n
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 The problem is trivial if the number of cities is 
either 3 or less. However, for larger values of ‘n’ the 
number of paths that needs to be evaluated increases 
exponentially. For a 10 city tour, N=181,440 and for 
11 cities N=1,814,400, and for 12 cities, 
N=19,958,400, for 30 cities, N=4.4x1030 : and for 
100 cities, it is 93 326 215 443 944 152 681 699 238 
856 266 700 490 715 968 264 381 621 468 592 963 
895 217 599 993 229 915 608 941 463 976 156 518 
286 253 697 920 827 223 758 251 185 210 916 864 
000 000 000 000 000 000 000 000. 
 
 The basic procedure for solving the 
geometric TSP using a continuous Hopfield model 
[5] is described as follows: 

Step 0: Initialize activation u[x][i] of all units and 
           corresponding v[x][i]. 

Initialize network parameters A, B, C, D, 
N, α, Δt. 

           Set all unew[x][i] and vnew[x][i] to zero. 
Step1: While the stopping condition is false,  
            do Step 2 ~ Step 6. 
Step 2: for x=1 to 10  
               for i=1 to 10  

=Distx,y =−Co ordinatresx1,y1,x2,y2 +  





−x1 x2
2

 

 −y1
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                 Perform Step3 ~ Step4. 
Step 3: Change activity on UNITx,i 

 unew[x][i] = u[x][i] +  Δt * [ -u[x][i] - A * 
Σv[x][j] <j!=i> - B * Σv[y][i] <y!=x> + C 
* {N-Σ Σv[.][.]} - D * Σ distance[x][y] * 
(v[y][i+1]+v[y][i-1]) <y!=x>]. 

Step 4: Apply output function vnew[x][i] = 
g(unew[x][i]). 

Step 5: Update all u[x][i] and v[x][i] to 
unew[x][i] and vnew[x][i].  

           Set all unew[x][i] and vnew[x][i] to zero. 
Step 6: Check stopping condition 

 
The output function used is:  

 

 
 

The stop condition used is:  The network was 
frozen. We define this as: The network was frozen if 
no outputs v[x][i] changed by more than 10E-10. One 
can also use the changes of u[x][i] as judgment. The 
algorithm was implemented using ‘C’ programming 
language under Linux platform. Figure 1, Figure 4 
and Figure 5 are describes the results and comparison 
results of TSP. 
 C1 C2 C3 C4 C5 

C1 0 0 1 0 0 
C2 1 0 0 0 0 
C3 0 0 0 0 1 
C4 0 1 0 0 0 
C5 0 0 0 1 0 

 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

3. DESIGN OF DYNAMIC GEOMETRIC 
TRAVELLING SALESPERSON PROBLEM 
(DGTSP) 
   The idea of Dynamic Traveling Salesperson 
Problem is obtained from “Traveling sales person 
problem”. The report “Genetic Algorithms for 
Optimizing Neural Network Learning rate and 
Momentum with Emphasis on Geometric TSP“ [3] 
and paper “Solution for the Geometric Traveling 
Salesperson Problem Using Continuous Hopfield 
Network Model” [6] are the main motivation for 
“Dynamic Geometric Salesperson problem”. It is an 
enhancement of GTSP. Here main idea is to vary the 
number of cities during the tour of the sales person. 
TSP is a classic example for optimization problem 
that defines easy solution. The conventional 
approach of comparing the cost function for alternate 
solutions and picking the most optimum fails in the 
case of DTSP because of the enormously large 
number of alternate solutions that need to be 
examined. Thus any algorithm for this problem is 
going to be impractical with certain examples. 
However the Hopefield Neural Network Model 
provides a possible technique to solve DGTSP. 

    

=G







Ux,i =OutputVx,i ⋅0.5 





+1 tanh(α*UT[x,i]

Cities 
(N) 

Permutation 
Combination (N!) 

Iterations 

Time 
(Micro Sec) 

6 720 0.010000 
7 5040 0.100000 
8 40320 0.310000 
9 362880 2.950000 
10 3628800 31.90000 

(I,j) 
(k,l) 1 2 3 4 5  

1   V1,3   A 

2 V2,1     B 

3     V3,5 C 

4  V4,2    D 

5    V5,4  E 

Best tour for 10 
Cities 

Epochs 
(Length) 

Time ( Micro 
Sec) 

Best Tour 1 127(2.947796) 0.020000 
Best Tour 2 373(2.986585) 0.070000 

Best Tour 3 158 
(3.005290) 0.040000 

Best Tour 4 134 
(3.271382) 0.030000 
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The DGTSP problem is defined as: there is a list 
of cities initially that are to be visited by salesperson. 
These cities are varied during the tour, where actually 
the cities are dynamically varied at the time of tour. A 
salesperson starts from a city and does not visit the 
cities that are removed and visits the cities that bare 
added during the tour and he come backs to the same 
city after visiting all the cities. Here the objective is to 
find the path, which follows following constrains: 

 
• The total length of the loop should be a 

minimum. 
• The salesperson cannot be at two different 

places at the same time. 
• The salesperson should visit each city only 

once. 
• The salesperson should visit each city once 

and only once. 
• The cities of the tour are dynamically varied.  

   In DGTSP, there are given n cities, and a non-
negative distance between any two cities i and j. We 
try to vary cities during the travel of the salesperson 
and we find the tour for the salesperson that best fits 
the above mentioned criterion.  There are various 
algorithms that can be used to try to solve such 
constrain problems. Most solution have used the 
following method [1] to find solution to TSP same 
can be used to solve DTSP: 

• Hopfield Network Model 
• Genetic Algorithms 
• Kohonen Self-organizing map 

For any N city problem, the distances between cities 
are calculated using discrete Euclidean length: 
 

 
 
The distances between the cities are given nXn 
symmetric distance matrix. Where ‘n’ is the total 
number of cities. 

 
Hopefield Neural Network Model can be used for 

constrained optimization problems. They have 
several potential advantages over traditional 
techniques for certain types of optimization 
problems: they can find near optimal solutions 
quickly for large problems, they can also handle 
situations in which some constraints are weak 
(desirable, but not absolutely required). 

 

 
Figure 1 Simple example of Hopfield Network 

 
A Hopfield network consists of binary neurons, 

which are connected by a symmetric network 
structure. Binary means that the neurons can be 
active (”ON”, state 1) or inactive (”OFF”, 0). The 
connections are weighted, and depending on the sign 
of the weight they can be intercepting or activating; 
e.g. a ON neuron activates all neurons, which are 
connected to it with a positive weight. There is a 
threshold value for every neuron, which the sum of 
the input values must reach to produce activity. 

At the beginning of the calculation of the network 
output, the neuron’s activation corresponds to the 
pattern to recognize. Then the network is iterated, 
which means that the state of the neurons is 
recalculated until the network is stable, i.e. the 
network state doesn’t change any more. This is 
possible in a finite amount of time and iterations for 
Hopfield networks. This can also be seen as the 
minimization of the energy in the network, so that 
the final state is a minimum. 
   The basic procedure for solving the Dynamic TSP 
using a continuous Hopfield model[5]  is described 
as follows: 
Step 0: Initialize activation u[x][i] of all units and  
           corresponding v[x][i]. 
           Initialize network parameters A, B, C, D, N, 
α, Δt. 
           Set all unew[x][i] and vnew[x][i] to zero. 
Step 1:While the stopping condition is false, do 
Step2 ~ Step6. 
Step 2: for  x=1 to N 
                  Check for the increment or decrement of                 
                  node and update u{x]{I] and v[x][I]. 
                  for i=1 to N 
                        Perform Step3 ~ Step4. 
Step 3: Change activity on UNITx,i 
                  unew[x][i] = u[x][i] +  

Δt * [ -u[x][i] - A * Σv[x][j] 
<j!=i> 

- B * Σv[y][i] <y!=x> 
+ C * {N-Σ Σv[.][.]} 
- D * Σ distance[x][y] * 
(v[y][i+1]+v[y][i-1]) <y!=x>                                  
]. 

Step 4: Apply output function vnew[x][i] = 
g(unew[x][i]). 

=Distx,y =−Co ordinatresx1,y1,x2,y2 +  





−x1 x2
2

 

 −y1
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Step 5: Update all u[x][i] and v[x][i] to unew[x][i] 
and  
             vnew[x][i].  
             Set all unew[x][i] and vnew[x][i] to zero. 
Step 6: Check stopping condition 
The output function used is:  

 

 
   The conventional Hopfield network is a single 
layer feed forward network without no self-feedback. 
For the specific application of n-city (‘n’ may vary)  
DGTSP, the single layer contains (nXn) neurons 
arranged in the form of an array.  Here a whole row 
of neurons represents a city, and for the final 
solution, only one neuron in a row comes ON. Thus 
the live neurons in the successive columns indicate 
the sequence of visit (position of the city in the 
Hamiltonian loop). The Figure 2 shows a typical 
solution for a 5-city problem; here the optimum path 
is indicated as C2C4C1C5C3C2. 
 
For the given co-ordinates calculate the distance 
matrix by using 

 
 

Initialize Activation Matrix U and Output Matrix V 
Activation Matrix 

 

 
where random noise is between –0.05 to +0.05 
Output Matrix 

 
V = Activation Matrix 
i = a specific row 
j = a specific column  

 
V = Activation Matrix  
x =  a specific row (xth city) 
i = ith neuron in xth row 
j = any neuron other than i in xth row 

 

V = Activation Matrix 
x = a specific column 
i = ith neuron in xth column 

y = any neuron other than i in the xth column 

 
V = Activation Matrix 
x = a specific row 
i = a specific column 
j = any neuron in xth row 
k = any neuron in ith column 

 
 

Dist = Distance Matrix 
V = Activation Matrix 
x = a specific row 
y = any row other than the xth row 
i = any neuron in yth row (left to y or right to y) 

 

                  
UT and VT are temporary Activation Matrix and 
Output Matrix  

 

 

 
 

 
 

 
Values of A, B, C, D, N, alpha (α) and deltat (Δt) are 
used as network parameters. 
   The initial activity levels (u[x][i]) were chosen so

 

that Σ Σv[x][i] =10 (which is the desired total 
activation for a valid tour). To do this, at first, we 
assign each v[x][i] = 10/100 + some random noise = 
0.1 + some random noise. The random noises are 
between [-0.05, +0.05].  
Then we got u[x][i] by  

 
Since the noises we added are random values, we can 
run the program many times with different starting 
configurations. 
 
4. EXPERIMENTAL RESULTS 

With the same network parameters and algorithm, 
but with different initial starting configurations of 
u[x][i] and v[x][i], we might get different training 
result, some might froze, some might fail to 
converge, and some might get valid tours. In our 
implementation, we try many different trails, none of 

=G







Ux,i =OutputVx,i ⋅0.5 

 +1 tanh(α*UT[x,i]

=Distx,y =−Co ordinatresx1,y1,x2,y2 +  





−x1 x2
2

 


y1

=Vi,j +
Cities
100 RandomNoise∑

j
∑

i

=RandomNoise −









RAND
RANDMAX

10.0 0.5

=Ui,j atanh






⋅2

v
−i,j 1

α∑
j

∑
i

=E1 Vx,i∑






≠j i

∑
i

∑
x

=E2 Vy,i∑






≠y x

∑
i

∑
x

=E3 Vj,k∑
k

∑
j

∑
i

∑
x

=E4 ⋅Distx,y






+V

−y,i 1 V
+y,i 1∑







≠y x

∑
i

∑
x

=∆U ⋅∆T 





− −⋅1.0 Ux,i −⋅A E1 +⋅B E2 −⋅C 






−N E3 ⋅D E4

=UTx,i +Ux,i ∆U

=G







Ux,i =OutputVx,i ⋅0.5 





+1 tanh(α*UT[x,i]

=VTx,i G







Ux,i

=∆V −Vx,i VTx,i

=Ux,i

atanh
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
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them got frozen, some might fail to converge, and 
most of them can find a valid tour.  

 
The result shows in figure 8 is the simulation 

using 10 cities, 11 cities and 12 cities. The traveling 
paths (Hamilton Loops) generated are shown in 
figure 8 with total length (distance travelled), total 
epoch and total time taken by the algorithm. 
Experiment is carried out from 2 cities to 12 cities. 

 
Hopfield neural network is efficient and it can 

converge to stable states in hundreds times iterations. 
The output first gives the N-cities Co-ordinates from 
the user. i.e. the number of cities and their distance is 
calculated using Euclidean Length formula. 
Activation and output matrix are initialized first and 
calculated matrices of the same are displayed. 
Depend on the output and distance matrixes the tour 
route, total distance travelled is calculated. Which 
yields the DTSP solution is optimal. 

 

 
Figure 2 Location of 10 cities 

 

Tr
ai
l 

Cit
ies 

Best Tour for 
Cities Length Epoch 

Time 
(Micr

o 
Sec) 

2 12 ABEGKFJLDIC
HA 4.604446 453 1.989

9 

4 11 HEBDAKJFICG
H 4.205311 348 1.518

2 

7 10 DGAHCIFJBED 3.11461 110 0.269
3 

 
5. CONCLUSIONS AND FURTHER WORK 
   In Dynamic Geometric TSP approach, 94 % of test 
cases the algorithm converged, while in 4 % 
algorithm failed to converge and in remaining 2% the 
energy of the system increased instead of decreasing. 
As shown in Figure 8 the best optimal length 
obtained and time taken for 10 cities which 
converges is 110 epochs, with time 0.2693. And for 
12 cities optimal length obtained is 453 epoch with 
1.9899 time. With this results we can state that the 
time taken falls under the range n2 to n!. In 
Nonrandomized city problem results shows in Figure 
3 and Figure 4 if the number of cities increased, the 

permutation combinations are also increased by n!, 
so the Nonrandomized city problem falls in O (n!). 
The DGSTP approach in Figure 8 the time taken for 
best tour result in different runs, which is much less 
that of 7 cities run of Nonrandomized city problem in 
Figure 4. So result of GTSP [6] and DGTSP 
algorithm techniques to find shortest path is the best 
technique, where the time complexity falls in 
between O ( n2) and O (n!).  
   
  There is lot of scope for research work in 
the field of Artificial Intelligence, Genetic 
Algorithms, Neural Networks and Combinatorial 
Optimization. As the paper includes Artificial 
Intelligence further research can be carried on 
solving the same problem using White Blood Cells 
(WBC) [11]. WBC platelets contribute to protection 
against bacterial infection. The new research shows 
that when there aren’t a lot of targets, cells do a 
pretty good job of finding the shortest possible route 
that hits all the targets. These cells “search” by 
tuning into local concentrations of chemical signals 
and following the signals to the nearest target. 
Repeating that process allows immune cells to find 
and demolish numerous attackers.  
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