
International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 58

AN APPROACH TO DESIGN AND IMPLEMENTATION OF DYNAMIC
GEOMETRIC TRAVELLING SALESPERSON PROBLEM USING

HOPEFIELD NEURAL NETWORK

Yogeesha C. B, Dr. Ramachandra. V. Pujeri
Karpagam University, Coimbatore,

Tamilnadu, INDIA – 641 021
 Collaboration Technology Group (CTG),

yogeesha_cb@yahoo.com ; ycb@cisco.com sriramu_vp@kggroup.com

ABSTRACT

 The use of Artificial Neural Network was originally motivated by the astonishing success of these
concepts in their biological counterparts. Despite their totally different approaches, it can merely be seen as
optimization methods, which is used in a wide range of applications, where traditional methods often prove to
be unsatisfactory. Dynamic Geometric Travelling Salesperson Problem (DGTSP), which considered being a
classic example for Combinatorial Optimization problem. Given the positions of a shortest tour that starts and
finishes at the same city in which the cities are dynamically varied. The DGTSP is simple to state but hard to
solve exactly, in that there is no known method of finding the optimum tour, shortest of computing the length of
every possible tour and then selecting the shortest one. It is said to be NP-Complete. This paper explores an
approach to design and implement this problem using Continuous Hopfield Neural Network Model.

Index Terms—Combinatorial Optimization Problem, Artificial Intelligence, Artificial Neural Networks, TSP,
Geometric Dynamic TSP, Neurodynamic Hopefield Neural Network Model.

1. INTRODUCTION

In Neurodynamic Hopefield Network Model
[3][4], the most general case, neural networks consist
of a (often very high) number of neurons, each of
which has a number of inputs, which are mapped via
a relatively simple function to its output. Networks
differ in the way their neurons are interconnected
(topology), in the way the output of a neuron
determined out of its inputs (propagation function)
and in their temporal behavior (synchronous,
asynchronous or continuous). While the temporal
behavior is normally determined by the simulation
hard and software used and the topology remains very
often unchanged, the propagation function is
associated with a set of variable parameters which
refer to the relative importance of the different inputs
(weights) or to describe a threshold-value of the
output (bias).

The most striking difference between neural

networks and traditional programming is, that neural
networks are in fact not programmed at all, but are
able to ”learn'' by example, thus extracting and
generalizing features of a presented training set and
correlating them to the desired output. After a certain

training period, the net should be able to produce the
right output also for new input values, which are nor
part of the training set. This learning process is
accomplished by a training algorithm, which
successively changes the parameters (i.e. the weights
and the bias) of each neuron until the desired result,
typically expressed by the maximum distance
between the actual and the training output is
achieved. Those algorithms can’t be subdivided into
two major groups according to the data used to
update the neuron parameters. Local algorithms (e.g.
Perceptron Learn Algorithm (PLA),
Backpropagation) restrict themselves to the local
data at the in and outputs of each neuron, while
global methods (e.g. Simulated Annealing) also use
overall data (e.g. statistical information).

The Travelling Salesperson Problem (TSP) is a

classic optimization problem that defines easy
solution. The TSP problem is NP-complete problem.
The conventional approach of comparing the cost
function for alternate solutions and picking the most
optimum, fails in the case of TSP because of the
enormously large number of alternate solutions that
need to be examined. Thus any algorithm for this

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html
mailto:yogeesha_cb@yahoo.com
mailto:ycb@cisco.com
mailto:sriramu_vp@kggroup.com

International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 59

problem is going to be impractical with certain
examples. However the artificial neural network
provides a possible technique to solve the TSP.

The Travelling Salesman Problem [3] is a
classified NP-hard optimization problem. It can be
defined as:
Input:
 - Set C co-ordinates of n cities {v1,...,vn}.
 - Distances d(i,j) for each pair (vi,vj) of C.
Output:
-Hamiltonian cycle for C.

2. NEURAL HOPEFIELD NETWORKS
AND GEOMETRIC-TSP
 Neural networks [4][8] have been used to solve a
variety of constrained optimization problems. Due to
their massive parallelism and fast network
convergence to optimal solutions, they reduce the
time that usually arise in most sequential algorithms.
Solving optimization problems requires minimization
of some cost functions subject to a set of constraints.
These cost functions are known as energy functions,
and the neural network will produce good solutions
by minimizing an energy function.

 This paper is motivated by basis of
“Solution for the Geometric Travelling Salesperson
Problem Using Continuous Hopfield Network
Model” [3][6]. This is proposed as an artificial neural
network hopefield network for solving difficult
optimization problems like the Travelling Salesman
Problem (TSP). In a Hopfield neural network each
processing element has an external input and has
weighted connections from other neurons. The
continuous Hopfield model is used to find solutions
for the 10-city problem. The 10 co-ordinates used as
an input to the problem. Like CityA(x1,y1),
CityB(x2,y2)...CityJ(x10,y10). The distances
between the cities are calculated using discrete
Euclidean length:

 The distances between the cities are given
nXn symmetric distance matrix. Where ‘n’ is the
total number of cities. A salesperson has to visit ‘n’
cities in such a sequence, that the total distance
traveled is a minimum. The travel is subject to the
following constraints:

• The path is a Hamiltonian loop (the
salesperson will return to the starting point)

• He shall visit each city once and only once.
• He cannot simultaneously be present in

more than one city at any given time.

• The path of travel from one city to another
is a straight line.

 Consider the options available for ‘n’ cities
in the list: The tour can begin from any city.
Therefore we have ‘n’ possible starting points for the
journey (however, the starting point is not a real
issue. What matters is the sequence in which the
cities are covered). After choosing the starting point,
there are (n-1) options to choose the next city. After
choosing the second city, there are (n-2) options to
choose the third city. And so on... Thus, on the
whole, n! distinct paths are possible. However, all
the n! paths are not distinct (optimization algorithm
need to be applied only for distinct paths).

• Since the optimization is aimed at the length
of Hamilton loop, the starting point of the
journey is not important. This reduces
search arena (n-1)! possible paths.

• For every possible solution, its reverse
sequence also gives the same distance (The
path length is same for the sequence
ABCDEA, and also its reverse
sequence AEDCBA. This is
true for every option).

 Thus the number of paths that need to be
examined are given by

()
2

!1
2

! −
==

n
n

nN

 The problem is trivial if the number of cities is
either 3 or less. However, for larger values of ‘n’ the
number of paths that needs to be evaluated increases
exponentially. For a 10 city tour, N=181,440 and for
11 cities N=1,814,400, and for 12 cities,
N=19,958,400, for 30 cities, N=4.4x1030 : and for
100 cities, it is 93 326 215 443 944 152 681 699 238
856 266 700 490 715 968 264 381 621 468 592 963
895 217 599 993 229 915 608 941 463 976 156 518
286 253 697 920 827 223 758 251 185 210 916 864
000 000 000 000 000 000 000 000.

 The basic procedure for solving the
geometric TSP using a continuous Hopfield model
[5] is described as follows:

Step 0: Initialize activation u[x][i] of all units and
 corresponding v[x][i].

Initialize network parameters A, B, C, D,
N, α, Δt.

 Set all unew[x][i] and vnew[x][i] to zero.
Step1: While the stopping condition is false,
 do Step 2 ~ Step 6.
Step 2: for x=1 to 10
 for i=1 to 10

=Distx,y =−Co ordinatresx1,y1,x2,y2 + 





−x1 x2
2

 

 −y1

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html

International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 60

 Perform Step3 ~ Step4.
Step 3: Change activity on UNITx,i

 unew[x][i] = u[x][i] + Δt * [-u[x][i] - A *
Σv[x][j] <j!=i> - B * Σv[y][i] <y!=x> + C
* {N-Σ Σv[.][.]} - D * Σ distance[x][y] *
(v[y][i+1]+v[y][i-1]) <y!=x>].

Step 4: Apply output function vnew[x][i] =
g(unew[x][i]).

Step 5: Update all u[x][i] and v[x][i] to
unew[x][i] and vnew[x][i].

 Set all unew[x][i] and vnew[x][i] to zero.
Step 6: Check stopping condition

The output function used is:

The stop condition used is: The network was
frozen. We define this as: The network was frozen if
no outputs v[x][i] changed by more than 10E-10. One
can also use the changes of u[x][i] as judgment. The
algorithm was implemented using ‘C’ programming
language under Linux platform. Figure 1, Figure 4
and Figure 5 are describes the results and comparison
results of TSP.
 C1 C2 C3 C4 C5

C1 0 0 1 0 0
C2 1 0 0 0 0
C3 0 0 0 0 1
C4 0 1 0 0 0
C5 0 0 0 1 0

3. DESIGN OF DYNAMIC GEOMETRIC
TRAVELLING SALESPERSON PROBLEM
(DGTSP)
 The idea of Dynamic Traveling Salesperson
Problem is obtained from “Traveling sales person
problem”. The report “Genetic Algorithms for
Optimizing Neural Network Learning rate and
Momentum with Emphasis on Geometric TSP“ [3]
and paper “Solution for the Geometric Traveling
Salesperson Problem Using Continuous Hopfield
Network Model” [6] are the main motivation for
“Dynamic Geometric Salesperson problem”. It is an
enhancement of GTSP. Here main idea is to vary the
number of cities during the tour of the sales person.
TSP is a classic example for optimization problem
that defines easy solution. The conventional
approach of comparing the cost function for alternate
solutions and picking the most optimum fails in the
case of DTSP because of the enormously large
number of alternate solutions that need to be
examined. Thus any algorithm for this problem is
going to be impractical with certain examples.
However the Hopefield Neural Network Model
provides a possible technique to solve DGTSP.

=G







Ux,i =OutputVx,i ⋅0.5 





+1 tanh(α*UT[x,i]

Cities
(N)

Permutation
Combination (N!)

Iterations

Time
(Micro Sec)

6 720 0.010000
7 5040 0.100000
8 40320 0.310000
9 362880 2.950000
10 3628800 31.90000

(I,j)
(k,l) 1 2 3 4 5

1 V1,3 A

2 V2,1 B

3 V3,5 C

4 V4,2 D

5 V5,4 E

Best tour for 10
Cities

Epochs
(Length)

Time (Micro
Sec)

Best Tour 1 127(2.947796) 0.020000
Best Tour 2 373(2.986585) 0.070000

Best Tour 3 158
(3.005290) 0.040000

Best Tour 4 134
(3.271382) 0.030000

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html

International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 61

The DGTSP problem is defined as: there is a list
of cities initially that are to be visited by salesperson.
These cities are varied during the tour, where actually
the cities are dynamically varied at the time of tour. A
salesperson starts from a city and does not visit the
cities that are removed and visits the cities that bare
added during the tour and he come backs to the same
city after visiting all the cities. Here the objective is to
find the path, which follows following constrains:

• The total length of the loop should be a

minimum.
• The salesperson cannot be at two different

places at the same time.
• The salesperson should visit each city only

once.
• The salesperson should visit each city once

and only once.
• The cities of the tour are dynamically varied.

 In DGTSP, there are given n cities, and a non-
negative distance between any two cities i and j. We
try to vary cities during the travel of the salesperson
and we find the tour for the salesperson that best fits
the above mentioned criterion. There are various
algorithms that can be used to try to solve such
constrain problems. Most solution have used the
following method [1] to find solution to TSP same
can be used to solve DTSP:

• Hopfield Network Model
• Genetic Algorithms
• Kohonen Self-organizing map

For any N city problem, the distances between cities
are calculated using discrete Euclidean length:

The distances between the cities are given nXn
symmetric distance matrix. Where ‘n’ is the total
number of cities.

Hopefield Neural Network Model can be used for

constrained optimization problems. They have
several potential advantages over traditional
techniques for certain types of optimization
problems: they can find near optimal solutions
quickly for large problems, they can also handle
situations in which some constraints are weak
(desirable, but not absolutely required).

Figure 1 Simple example of Hopfield Network

A Hopfield network consists of binary neurons,

which are connected by a symmetric network
structure. Binary means that the neurons can be
active (”ON”, state 1) or inactive (”OFF”, 0). The
connections are weighted, and depending on the sign
of the weight they can be intercepting or activating;
e.g. a ON neuron activates all neurons, which are
connected to it with a positive weight. There is a
threshold value for every neuron, which the sum of
the input values must reach to produce activity.

At the beginning of the calculation of the network
output, the neuron’s activation corresponds to the
pattern to recognize. Then the network is iterated,
which means that the state of the neurons is
recalculated until the network is stable, i.e. the
network state doesn’t change any more. This is
possible in a finite amount of time and iterations for
Hopfield networks. This can also be seen as the
minimization of the energy in the network, so that
the final state is a minimum.
 The basic procedure for solving the Dynamic TSP
using a continuous Hopfield model[5] is described
as follows:
Step 0: Initialize activation u[x][i] of all units and
 corresponding v[x][i].
 Initialize network parameters A, B, C, D, N,
α, Δt.
 Set all unew[x][i] and vnew[x][i] to zero.
Step 1:While the stopping condition is false, do
Step2 ~ Step6.
Step 2: for x=1 to N
 Check for the increment or decrement of
 node and update u{x]{I] and v[x][I].
 for i=1 to N
 Perform Step3 ~ Step4.
Step 3: Change activity on UNITx,i
 unew[x][i] = u[x][i] +

Δt * [-u[x][i] - A * Σv[x][j]
<j!=i>

- B * Σv[y][i] <y!=x>
+ C * {N-Σ Σv[.][.]}
- D * Σ distance[x][y] *
(v[y][i+1]+v[y][i-1]) <y!=x>
].

Step 4: Apply output function vnew[x][i] =
g(unew[x][i]).

=Distx,y =−Co ordinatresx1,y1,x2,y2 + 





−x1 x2
2

 

 −y1

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html

International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 62

Step 5: Update all u[x][i] and v[x][i] to unew[x][i]
and
 vnew[x][i].
 Set all unew[x][i] and vnew[x][i] to zero.
Step 6: Check stopping condition
The output function used is:

 The conventional Hopfield network is a single
layer feed forward network without no self-feedback.
For the specific application of n-city (‘n’ may vary)
DGTSP, the single layer contains (nXn) neurons
arranged in the form of an array. Here a whole row
of neurons represents a city, and for the final
solution, only one neuron in a row comes ON. Thus
the live neurons in the successive columns indicate
the sequence of visit (position of the city in the
Hamiltonian loop). The Figure 2 shows a typical
solution for a 5-city problem; here the optimum path
is indicated as C2C4C1C5C3C2.

For the given co-ordinates calculate the distance
matrix by using

Initialize Activation Matrix U and Output Matrix V
Activation Matrix

where random noise is between –0.05 to +0.05
Output Matrix

V = Activation Matrix
i = a specific row
j = a specific column

V = Activation Matrix
x = a specific row (xth city)
i = ith neuron in xth row
j = any neuron other than i in xth row

V = Activation Matrix
x = a specific column
i = ith neuron in xth column

y = any neuron other than i in the xth column

V = Activation Matrix
x = a specific row
i = a specific column
j = any neuron in xth row
k = any neuron in ith column

Dist = Distance Matrix
V = Activation Matrix
x = a specific row
y = any row other than the xth row
i = any neuron in yth row (left to y or right to y)

UT and VT are temporary Activation Matrix and
Output Matrix

Values of A, B, C, D, N, alpha (α) and deltat (Δt) are
used as network parameters.
 The initial activity levels (u[x][i]) were chosen so

that Σ Σv[x][i] =10 (which is the desired total
activation for a valid tour). To do this, at first, we
assign each v[x][i] = 10/100 + some random noise =
0.1 + some random noise. The random noises are
between [-0.05, +0.05].
Then we got u[x][i] by

Since the noises we added are random values, we can
run the program many times with different starting
configurations.

4. EXPERIMENTAL RESULTS

With the same network parameters and algorithm,
but with different initial starting configurations of
u[x][i] and v[x][i], we might get different training
result, some might froze, some might fail to
converge, and some might get valid tours. In our
implementation, we try many different trails, none of

=G







Ux,i =OutputVx,i ⋅0.5 

 +1 tanh(α*UT[x,i]

=Distx,y =−Co ordinatresx1,y1,x2,y2 + 





−x1 x2
2

 


y1

=Vi,j +
Cities
100 RandomNoise∑

j
∑

i

=RandomNoise −









RAND
RANDMAX

10.0 0.5

=Ui,j atanh






⋅2

v
−i,j 1

α∑
j

∑
i

=E1 Vx,i∑






≠j i

∑
i

∑
x

=E2 Vy,i∑






≠y x

∑
i

∑
x

=E3 Vj,k∑
k

∑
j

∑
i

∑
x

=E4 ⋅Distx,y






+V

−y,i 1 V
+y,i 1∑







≠y x

∑
i

∑
x

=∆U ⋅∆T 





− −⋅1.0 Ux,i −⋅A E1 +⋅B E2 −⋅C 






−N E3 ⋅D E4

=UTx,i +Ux,i ∆U

=G







Ux,i =OutputVx,i ⋅0.5 





+1 tanh(α*UT[x,i]

=VTx,i G







Ux,i

=∆V −Vx,i VTx,i

=Ux,i

atanh




−⋅2 Vx,i 1

α

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html

International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 63

them got frozen, some might fail to converge, and
most of them can find a valid tour.

The result shows in figure 8 is the simulation

using 10 cities, 11 cities and 12 cities. The traveling
paths (Hamilton Loops) generated are shown in
figure 8 with total length (distance travelled), total
epoch and total time taken by the algorithm.
Experiment is carried out from 2 cities to 12 cities.

Hopfield neural network is efficient and it can

converge to stable states in hundreds times iterations.
The output first gives the N-cities Co-ordinates from
the user. i.e. the number of cities and their distance is
calculated using Euclidean Length formula.
Activation and output matrix are initialized first and
calculated matrices of the same are displayed.
Depend on the output and distance matrixes the tour
route, total distance travelled is calculated. Which
yields the DTSP solution is optimal.

Figure 2 Location of 10 cities

Tr
ai
l

Cit
ies

Best Tour for
Cities Length Epoch

Time
(Micr

o
Sec)

2 12 ABEGKFJLDIC
HA 4.604446 453 1.989

9

4 11 HEBDAKJFICG
H 4.205311 348 1.518

2

7 10 DGAHCIFJBED 3.11461 110 0.269
3

5. CONCLUSIONS AND FURTHER WORK
 In Dynamic Geometric TSP approach, 94 % of test
cases the algorithm converged, while in 4 %
algorithm failed to converge and in remaining 2% the
energy of the system increased instead of decreasing.
As shown in Figure 8 the best optimal length
obtained and time taken for 10 cities which
converges is 110 epochs, with time 0.2693. And for
12 cities optimal length obtained is 453 epoch with
1.9899 time. With this results we can state that the
time taken falls under the range n2 to n!. In
Nonrandomized city problem results shows in Figure
3 and Figure 4 if the number of cities increased, the

permutation combinations are also increased by n!,
so the Nonrandomized city problem falls in O (n!).
The DGSTP approach in Figure 8 the time taken for
best tour result in different runs, which is much less
that of 7 cities run of Nonrandomized city problem in
Figure 4. So result of GTSP [6] and DGTSP
algorithm techniques to find shortest path is the best
technique, where the time complexity falls in
between O (n2) and O (n!).

 There is lot of scope for research work in
the field of Artificial Intelligence, Genetic
Algorithms, Neural Networks and Combinatorial
Optimization. As the paper includes Artificial
Intelligence further research can be carried on
solving the same problem using White Blood Cells
(WBC) [11]. WBC platelets contribute to protection
against bacterial infection. The new research shows
that when there aren’t a lot of targets, cells do a
pretty good job of finding the shortest possible route
that hits all the targets. These cells “search” by
tuning into local concentrations of chemical signals
and following the signals to the nearest target.
Repeating that process allows immune cells to find
and demolish numerous attackers.

ACKNOWLEDGMENT

The author wish to thank member of Collaboration
Test Group (CTG), Cisco Systems, Bangalore for
their help in completing this work.

REFERENCES
[1] Elaine Rich and Kevin Knight, 1991, “Artificial

Intelligence”, Second Edition, Tata McGraw-
Hill Publishing Company Limited, pp. 40-62.

[2] Byung-In Kim, Jae-Ik Shim, Min Zhang,
December 1998 “Comparison of TSP
Algorithms” Project for Models in Facilities
Planning and Materials Handling

[3] Yogeesha CB and Vinaya Kumar K, 2004,
“Genetic Algorithms for Optimizing Neural
Network Learning Rate and Momentum pair
with Emphasis on Geometric Traveling
Salesperson Problem. “ 2004, M.Tech. Project
Report, NITK., Surathkal.

[4] Dan W. Patterson, 1996, “Artificial Neural
Networks: Theory and Applications”, Prentice
Hall of India private Limited, pp. 14-19, 141-
178

[5] The NIST website. National Institute of
Standard and Technology, “Dictionary of
Algorithms and Data Structures.” [Online].
Available: http://www.nist.gov/dads/

[6] Yogeesha CB and Vinaya Kumar K, 2004
“Solution for the Geometric Traveling

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html

International Journal of Technology and Engineering System (IJTES)
Vol 6. No.1 – Jan-March 2014 Pp. 58-64

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

gopalax Publications 64

Salesperson Problem Using Continuous
Hopfield Network Model” 12th IEEE
International Conference on Advanced
Computing and Communication ADCOM 2004

[7] Dr. S N Omkar, Scientific Officer, Dept. of
Aerospace Engg., IISc, Bangalore, 27th Aug.
2001 to 31st Aug. 2001, “Introduction to
Artificial Neural Networks and Engineering
Applications”, Short term course jointly
organized by Dept. of Aerospace Engg., IISc.
Bangalore and Dept. of Computer Science,
SIT., Tumkur. at SIT., Tumkur.

[8] Dan W. Patterson, 1996, “Artificial Neural
Networks: Theory and Applications”, Prentice
Hall of India private Limited, pp. 14-19, 141-
178

[9] Kate Smith, Marimuthu Palaniswami and
Mohan Krishnamoorthy, NOVEMBER 1998
“Neural Techniques for Combinatorial
Optimization with Applications”, IEEE
TRANSACTIONS ON NEURAL
NETWORKS, VOL. 9, NO. 6, pp. 1301-1318.

[10] Yogeesha CB and Dr. Ramachandra V Pujeri,
2012 “Randomized Algorithms: On the
Improvement of Searching Techniques Using
Probabilistic Data Structure Linear Linked Skip
Lists”,
http://link.springer.com/chapter/10.1007/978-
81-322-0740-5_19, International Conference
on Advances in Computing, pp 147-153

[11] Rachel Ehrenberg, “White Blood Cells Solve
Traveling-Salesman Problem”: Online:
http://www.wired.com/wiredscience/2011/04/ce
lls-math-problem.

http://www.ijcns.com/
http://www.ijcns.com/ijtes/index.html

	The problem is trivial if the number of cities is either 3 or less. However, for larger values of ‘n’ the number of paths that needs to be evaluated increases exponentially. For a 10 city tour, N=181,440 and for 11 cities N=1,814,400, and for 12 citi...
	Step 3: Change activity on UNITx,i

	The output function used is:
	Step 3: Change activity on UNITx,i

	Step 6: Check stopping condition
	The output function used is:
	For the given co-ordinates calculate the distance matrix by using
	Initialize Activation Matrix U and Output Matrix V Activation Matrix
	Output Matrix
	Then we got u[x][i] by

